
Journaling Soft Updates

Brought to you by

Dr. Marshall Kirk McKusick
and

Jeffery Roberson

Asia BSD Conference
Tokyo, Japan

March 15, 2015

Copyright 2015 Marshall Kirk McKusick.
All Rights Reserved.



Overview

• Introduction to soft updates

• Filesystem operations that require
journaling

• Additional requirements of journaling

• Crash recovery

• Performance

• Using Journaled Soft Updates



Keeping Metadata Consistent 1

• Synchronous writes

• Benefits: simple and effective

• Drawbacks: create/delete intensive
applications run slowly, slow recovery
after a crash

• Non-Volatile RAM

• Benefits: usually runs all operations at
memory speed, quick recovery after a
crash

• Drawbacks: expensive hardware
unavailable on many machines,
somewhat complex recovery

• Atomic Updates (journaling and logging)

• Benefits: create/remove do not slow
down under under heavy load, quick
recovery after a crash

• Drawbacks: extra I/O generated, little
speed-up for light loads



Keeping Metadata Consistent 2

• Copy-on-write Filesystem (LFS, ZFS,
WAFL, etc)

• Benefits: write throughput, cheap
snapshots, always consistent

• Drawbacks: disk fragmentation,
memory overhead

• Soft updates

• Benefits: most operations run at
memory speed, reduced system I/O,
instant recovery after a crash

• Drawbacks: complex code, background
fsck, and increased memory loading



Tracking File Removal Dependencies

Ordering constraints

1) Namein on-disk directory must be
deleted

2) Deallocate(zero out) on-disk inode

3) Releasefile’s blocks to free-space bitmap

How soft updates maintains this ordering

1) Zeroout directory entry in kernel buffer
and hang a dependency structure on
buffer to be notified when buffer is
written.

2) Whennotified that directory buffer is
written, save list of inode’s blocks, then
zero out inode in kernel buffer and hang a
dependency structure (containing the list
of blocks) on buffer to be notified when
buffer is written.

3) Whennotified that inode buffer is
written, release list of saved blocks to
free-space bitmap.



Recovery After a Crash

• Disk state is always valid but behind in-
memory state

• Only inconsistencies:

• Blocks marked in use that are free

• Inodes marked in use that are free

• It is safe to run immediately after a crash
though eventually lost space must be
reclaimed



Adding Journaling to Soft Updates

Only need to journal operations that
orphan resources

Journal needs only 16Mb independent of
filesystem size

Filesystem operations that require
journaling

• Increased link count

• Decreased link count

• Unlink while referenced

• Change of directory offset

• Cylinder group updates of freed blocks
and inodes



Additional Requirements of Journaling

Additional soft update tracking

• Cylinder group rollbacks

• Additional inode rollbacks

Reclaiming journal space

• Soft-update dependencies reference
oldest segment-structure in the journal
with entries that describe the operation

• Release journal segment when all
dependency references to it are gone



Crash recovery

Crash recovery is done byfsck

Recovery steps

• Scan the journal

• Link count increases

• Link count decreases

• Free inodes with zero link count

• Free inodes that were unlinked but busy

• Free unallocated blocks



Performance

Recovery times

• Eight-way buildworld on 250GB
80%-full disk reset after 10 minutes

• Journal recovery: 0.9 seconds

• Verificationfsck: 27 minutes

• Random collection of parallel file
writes on 11Tb 92%-full 14-disk 3ware
RAID array reset after several hundred
megabytes of written data

• Journal recovery: under a minute

• Verificationfsck: 10 hours

Runtime slowdown

• Additional I/O to journal

• Blocking to wait for journal writes

• Extra CPU overhead is negligible



Using Journaled Soft Updates

• On by default since 9.0 in January 2012

• Can be enabled/disabled using tunefs(8)

• Only fixes known inconsistencies. If
corruption caused by media failure or I/O
errors, then full fsck must be run.



Interesting Statistics

• Eleven new dependency types were added
to the existing fourteen

• Nearly doubled size of soft-updates code
(6,409 lines to 11,491 lines)

• Journal recovery code is 2,600 lines versus
6,100 for backgroundfsck

• Journal recovery code shares little of the
normalfsck code

• Adding the new dependencies was easy
compared to figuring out and adding the
new rollbacks

• Directory rename consumed a quarter of
the development time



Questions

Journaled Soft-updates paper:

http://www.mckusick.com/publications/suj.pdf

Journaled Soft-updates slides:

http://www.mckusick.com/publications/suj-
slides.pdf

Marshall Kirk McKusick

<mckusick@mckusick.com>

Jeffery Roberson

<jroberson@jroberson.net>


