A Look Inside FreeBSD with DTrace

Introduction and Tutorial Overview

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

Objectives

e Understand key kernel concepts
e Become comfortable with DTrace

e Terminology
e Basic Usage
e Advanced Scripting

e Explore on your own

What is an operating system?

Whiteboarding exercise

What is an operating system?

[An OS is] low-level software that supports
a computer’s basic functions, such as
scheduling tasks and controlling peripherals.
- Google hive mind

General-purpose operating systems

... are for general-purpose computers

e Servers, workstations, mobile devices

e Run ‘applications’ —i.e., software unknown at design time
e Abstract the hardware, provide ‘class libraries’

e E.g., Windows, Mac OS X, Android, iOS, Linux, FreeBSD,

General-purpose operating systems

... are for general-purpose computers

e Servers, workstations, mobile devices
e Run ‘applications’ —i.e., software unknown at design time

e Abstract the hardware, provide ‘class libraries’
e E.g., Windows, Mac OS X, Android, iOS, Linux, FreeBSD,

Userspace Local and remote shells, management tools,

daemons
Run-time linker, system libraries, tracing facilities

General-purpose operating systems

... are for general-purpose computers

e Servers, workstations, mobile devices

e Run ‘applications’ —i.e., software unknown at design time
e Abstract the hardware, provide ‘class libraries’

e E.g., Windows, Mac OS X, Android, iOS, Linux, FreeBSD,

Userspace Local and remote shells, management tools,
daemons

Run-time linker, system libraries, tracing facilities

- - - - system-call interface - - - -

General-purpose operating systems

... are for general-purpose computers

e Servers, workstations, mobile devices
e Run ‘applications’ —i.e., software unknown at design time

e Abstract the hardware, provide ‘class libraries’
e E.g., Windows, Mac OS X, Android, iOS, Linux, FreeBSD,

Userspace Local and remote shells, management tools,
daemons
Run-time linker, system libraries, tracing facilities
- - - - system-call interface - - - -
Kernel System calls, hypercalls, remote procedure call
(RPC)
Processes, filesystems, IPC, sockets,

General-purpose operating systems

... are for general-purpose computers

e Servers, workstations, mobile devices
e Run ‘applications’ —i.e., software unknown at design time

e Abstract the hardware, provide ‘class libraries’
e E.g., Windows, Mac OS X, Android, iOS, Linux, FreeBSD,

Userspace Local and remote shells, management tools,
daemons
Run-time linker, system libraries, tracing facilities
- - - - system-call interface - - - -
Kernel System calls, hypercalls, remote procedure call
(RPC)
Processes, filesystems, IPC, sockets,

What does an operating system do?

e Key hardware-software surface (cf. compilers)

e System management: bootstrap, shutdown, watchdogs
e Low-level abstractions and services
e Programming: processes, threads, IPC, program model
e Resource sharing: scheduling, multiplexing, virtualisation
e 1/O: device drivers, local/distributed filesystems, network
stack
e Security: authentication, encryption, permissions, labels,
audit
e Local or remote access: console, window system, SSH

e Libraries: math, protocols, RPC, cryptography, Ul,
multimedia
e Other stuff: system log, debugging, profiling, tracing

Why study operating systems?

The OS plays a central role in whole-system design when
building efficient, effective, and secure systems:

e Key interface between hardware and software

e Strong influence on whole-system performance

e Critical foundation for computer security

e Exciting programming techniques, algorithms, problems
e Virtual memory; network stacks; filesystems; runtime

linkers; ...

e Co-evolves with platforms, applications, users

e Multiple active research communities

e Reusable techniques for building complex systems

e Boatloads of fun (best text adventure ever)

FreeBSD

Open Source
e Unix

e Posix

Complete System

20 years of history

Overview

e This Morning

Introduction to DTrace

Processes and the Process Model
Scheduler

Locking

e This Afternoon

e Networking
e Filesystems

A Look Inside FreeBSD with DTrace
What is DTrace?

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

10

What is DTrace?

¢ A dynamic tracing framework for software
e Low impact on overall system performance

e Does not incur costs when not in use

11

What can DTrace show me?

When a function is being called

A function’s arguments

The frequency of function calls
A whole lot more...

12

A Simple Example

1 dtrace —n syscall :::

2 dtrace: description ’'syscall:::’ matched 2148 probes
3 CPU ID FUNCTION :NAME
4 1 51079 ioctl :return
5 1 51078 ioctl :entry
6 1 51079 ioctl :return
7 1 51078 ioctl :entry
8 1 51079 ioctl :return
9 1 51632 sigprocmask: entry
10 1 51633 sigprocmask : return
11 1 51784 sigaction :entry

e Look at all system calls

13

How does DTrace Work?

e Various probes are added to the system
e The probes are activated using the dtrace program

e A small number of assembly instructions are modified at
run-time to get the system to run in the probe

14

A more complex example

1 dtrace —n ’syscall ::write:entry /arg2 != 0/ { printf("write size % d\n", arg2); } ’
2 dtrace: description ’'syscall::write:entry ' matched 2 probes

3 CPU ID FUNCTION :NAME

4 0 50978 write :entry write size 1

5 0 50978 write :entry write size 55

6 0 50978 write :entry write size 2

15

DTrace Glossary

Probe A way of specifying what to trace

Provider A DTrace defined module that provides information
about something in the system

Module A software module, such as kernel
Function A function in a module, such as ether_input
Predicate A way of filtering DTrace probes

Action A set of D language statements carried out when
a probe is matched

16

Providers

fbt Function Boundary Tracing (50413)
syscall System Calls (2148)
profile Timing source
proc Process Operations
sched Scheduler
io 1/0 calls
ip Internet Protocol
udp UDP
tcp TCP
vis Filesystem Routines

17

Dissecting a Probe

e syscall::write:entry
Provider syscall
Module None
Function write
Name entry
e fbt:kernel:ether_input:entry
Provider fbt
Module kernel
Function ether_input
Name entry

18

DTrace Requirements

e A kernel with DTrace support built in
e Default on FreeBSD 10 or later

e The ability to sudo or be root

e The complete command syntax is covered in the dirace
manual page

19

Finding Probes

e Listing all the probes gets you 50000 to choose from
¢ Judicious use of providers, modules and grep

e €.9. dtrace -1 -P syscall

20

Probe Arguments

e Use verbose (-v) mode to find probe arguments

e sudo dtrace -1lv —-f syscall:freebsd:read

ID PROVIDER MODULE
57177 syscall freebsd

Argument Types
args[0]: int
args[1l]: void =

args[2]: size_t

21

The D Language

e A powerful subset of C
¢ Includes features specific to DTrace, such as aggregations

e Anything beyond some simple debugging usually required
a D script

22

DTrace On

e A set of useful single line scripts

Trace file opens with process and filename:
dtrace —n ’syscall::openx:entry { printf("%s %s", execname, copyinstr(arg0)); }’

Count system calls by program name:
dtrace —n ’syscall :::entry { @[execname] = count(); }’

Count system calls by syscall:
dtrace —n ’syscall :::entry { @[probefunc] = count(); }’

0N OAWND =

23

Count System Calls

1 dtrace —n ’syscall :::entry { @[probefunc] = count(); }’

2 dtrace: description ’'syscall:::entry ° matched 1072 probes

3 C

4 fstat 1
5 setitimer 1
6 getpid 2
7 read 2
8 sigreturn 2
9 write 3
10 getsockopt 4
11 select 6
12 sigaction 6
13 _umtx_op 7
14 __sysctl 8
15 munmap 18
16 mmap 19
17 sigprocmask 23
18 clock_gettime 42
19 ioctl 45

24

Aggregations

syscall:::entry { @[probefunc] = count(); }

The @ [probefunc] syntax
Aggregates data during a run for later output

Extremely powerful feature of D language

25

Quantization

1
2
3
4
5
6
7
8

a4 A
AN = O ©

Summarize requested write () sizes by program name, as power—of—2 distributions (bytes):
dtrace —n ’'syscall:: write :entry { @[execname] = quantize(arg2); }’
dtrace: description ’syscall::write:entry ° matched 2 probes

rC
find
value ——— Distribution —— — count
1| 0
2 | 1
4 | 17
8 a@ 841
16 (CCCQEEERCREE0R 6940
" 13666
59
128 | 0

26

Probing the stack

e Find out how we got where we are
e The stack () routine

27

Who called malloc()?

1 1 29371 malloc:entry
2 kernel ‘cloneuio+0x2c

3 kernel ‘vn_io_fault1+0x3b

4 kernel ‘vn_io_fault+0x18b

5 kernel ‘dofileread+0x95

6 kernel ‘kern_readv+0x68

7 kernel ‘sys_read+0x63

8 kernel “amd64_syscall+0x351
9 kernel ‘0 xffffffff80d0aa6b

e Read upwards from the bottom

28

DTrace Toolkit

An open source set of tools written to use D scripts

Currently specific to Solaris

Exists as a FreeBSD port (thanks to Steve)

Currently being updated

29

An example script: hotkernel

1 ./ hotkernel

2 Sampling... Hit Ctrl-C to end.

3 *C

4 FUNCTION COUNT PCNT
5 kernel ‘lookup 1 0.1%
6 kernel ‘unlock_mtx 1 0.1%
7 kernel ‘_vm_page_deactivate 1 0.1%
8

9 kernel ‘amd64_syscall 9 0.5%
10 kernel ‘pmap_remove_pages 9 0.5%
1 kernel ‘hpet_get_timecount 13 0.7%
12 kernel ‘pagezero 15 0.8%
13 kernel ‘0 xffffffff80 34 1.9%
14 kernel “spinlock_exit 486 27.0%
15 kernel “acpi_cpu_c1 965 53.6%

30

e Filtering probes based on relevant data
e Useful for excluding common conditions

e /arg0 !'= 0/ Ignore a normal return value

31

Tracking a Specific Process

e pidis used to track a Process ID
e Used in predicates
e /pid == 1234/

32

Running a Program Under DTrace

e DTrace is most often used on running systems
e DTrace can be attached at runtime to a program
e dtrace —-p pid ...
e Run a program completely under the control of DTrace

e dtrace -c cmd ...

33

Going too far

e Overly broad probes slow down the system

e Watching everything in the kernel
e Registering a probe on a module

34

The Probe Effect

Each probe point has a cost

Every action has a reaction

Any action code requires time to run

Impacts system performance

35

DTrace Lab Exercises

Bring up OSCourse Virtual Machine

Find the current list of providers

Count the probes available

Trace all the system calls used by sshd

Summarize requested write() sizes by program name

Summarize return values from write() by program name

Find and modify three (3) of the DTrace one-liners

36

A Look Inside FreeBSD with DTrace

Processes

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

37

The Process Model

e The most basic container
¢ All of a program’s resources
e The entity that is scheduled and executed

38

The UNIX process life cycle

e fork ()
Dord « Child inherits address
Sk X @ execve(“/bin/dd”) space and other
I A properties
e Stack e Program prepares

process for new binary

@ exit()
o] N (e.g., stdio)

PID: 71i % heap X e Copy-on-Write (COW)

@waitd) s, pp.716

39

The UNIX process life cycle

e fork ()

Dord e Child inherits address
. X @ execve(“/bin/dd”) space and other
I A properties
hean stack e Program prepares
— ® exitg process for new binary
5 || A (e.g., stdio)

PID:71i heap X e Copy-on-Write (COW)
... E e execve ()

@waitd) -, 716

.. B e Kernel replaces address

""" space, loads new binary,
starts execution

39

The UNIX process life cycle

e fork ()
@ fork()

- e Child inherits address
. X @ execve(“/bin/dd”) space and other
I A properties
stack e Program prepares
— ® exitg process for new binary

5 || A (e.g., stdio)

PID:71i heap X e Copy-on-Write (COW)
... E e execve ()

@waitd) -, 716

.. B e Kernel replaces address

""" space, loads new binary,
starts execution

heap

e exit ()
e Process can terminate

self (or be terminated) B8

The UNIX process life cycle

e fork ()
@ fork()

- e Child inherits address
. X @ execve(“/bin/dd”) space and other
I A properties
stack e Program prepares
— ® exitg process for new binary

5 || A (e.g., stdio)

PID:71i heap X e Copy-on-Write (COW)
... E e execve ()

@waitd) -, 716

.. B e Kernel replaces address

""" space, loads new binary,
starts execution

heap

e exit ()
e Process can terminate
self (or be terminated)

e wait4 (et al)

39

Tracing the Process Lifecycle

fork() Count forks per second
execve() What is being executed?
exit() What programs generate errors?

40

Who is forking?

1 dtrace —n ’syscall::x fork:entry { @forks[execname] = count();}’

2 dtrace: description ’'syscall::xfork:entry ’ matched 8 probes

3 C

4 csh 7031

41

Fork Discussion

e Why do we use a wild card?

e syscall::xfork:entry

42

hat’s starting on the system?

./ execsnoop
uiD PID PPID ARGS
0 4661 4398 —csh
0 4661 4398 Is
0 4662 4398 —csh
0 4662 4398 Is

o g bW =

43

A look inside execsnhoop

44

exec Program execution attempt
exec-failure Program start failed
exec-success Program successfully started
exit Program terminated
signal-send Send a signal
signal-clear Cleared a signal
signal-discard Signal ignored

45

Process Thrashing

e Process creation is expensive

e Programs that start and fail cause the system to thrash

46

Tracking Processes

e newproc.d track new processes
e pidspersec.d processes created per second

47

Process Termination

e All processes exit
e Return an error status

e May exit due to a fault

48

Programs that exit with errors

1 dtrace —n ’'syscall::exit:entry /arg0 != 0/{ printf("%s %d\n", execname, arg0); }’

49

Early form of inter-process communication

Modeled on hardware interrupts

Processes can send and receive signals

Signals can be caught

Uncaught signals often result in program termination

Kill signal (9) cannot be avoided

50

Tracking Signals

e kill.d displays signals sent and received

51

Process Lab Exercises

e What happens for each signal sent to yes
e Extend newproc script to show program arguments

e Write a script to show the entire process life cycle from
creation to exit

52

A Look Inside FreeBSD with DTrace
The Scheduler

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

53

The Scheduler

Decides which thread gets to run

The thread is the scheduable entity

Chooses a processor/core

Can be overridden by cpuset

54

Process States

NEW Being created
RUNNABLE Can run
SLEEPING Awaiting some event
STOPPED Debugging

ZOMBIE Process of dying

55

Scheduling Classes

ITHD interrupt thread
REALTIME real-time user
KERN kernel threads
TIMESHARE normal user programs
IDLE run when nothing else does

56

Scheduler Framework

e Schedulers have kernel API

e SCHED_4BSD and SCHED_ULE

e High level scheduler picks the CPU via the runqg
e Low level scheduler picks the thread to run

e sched_pickcpu selects the CPU

e mi_switch Entry to a forced context switch

e sched_ switch scheduler API

57

Sched Provider

on-cpu Thread moves on core

off-cpu Thread moves off core
remain-cpu Thread remains on core
change-pri Priority changed
fbt:kernel:cpu_idle:entry Thread went idle

58

Dummy Probes (Do Not Use)

e Probes purely for D script compatibility
e These never fire

® cpucaps—sleep

e cpucaps—-wakeup

e schedctl-nopreempt

e schedctl-preempt

e schedctl-yield

59

Idle vs. Running

e cpudists

60

Who'’s sleeping?

dtrace —n ’sched:::sleep { @prog[execname] = count() }
dtrace: description ’sched:::sleep ° matched 1 probe
rC

cron
devd
pagezero
sendmail
sudo
nfsd 2

© oo NOOOA WD =

61

Idle vs. Active

1 sudo ./cpudist

2 Ctrl-C

3 KERNEL

4 value ——— Distribution —— count
B 256 | 0
6 512 3
7 1024 58
8 2048 93
9 4096 120
10 8192 17
11 16384 1
12 32768 4
13 65536 | 1
14 131072 | 0

62

A look inside cpudist

63

Changing Priorities

1 dtrace —n ’sched:::change—pri { printf("%s % %d", execname, curlwpsinfo—pr_pri, arg2); }’ |
2 dtrace: description ’sched:::change—pri ’ matched 1 probe

3 CPU ID FUNCTION :NAME

4 1 49443 :change—pri csh 176 152

5 1 49443 :change—pri Is 176 120

64

A Multi-core World

e All large systems are multi-core
e Scheduling on multi-core is difficult
e Some systems resort to static allocation

65

Are threads migrating?

e Watching threads with cpuwalk.d

66

Context Switching

Processes all believe they own the computer

Context switching maintains this fiction

Requires saving and restoring state

Common measure of operating system performance

e cswstat .d measures overall context switching

67

A look inside cswstat.d

68

Scheduler Lab Exercises

Write a one-liner to show processes waking up

Extend wake up one-liner to include stack tracing

Extend priority one-liner to include stack tracing

Add periodic output to cpuwalk.d

Track context switching for a single process

69

A Look Inside FreeBSD with DTrace
Extending DTrace

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

70

Death to printf

Over 10,000 calls to device_printf ()

75 Separate version of DEBUG macro

WITNESS for lock ordering

LOCKSTAT locking statistics
KTR for Kernel Trace

Enabled at compile time

71

Statically Defined Tracepoints

e Can appear anywhere in code
e Not just at entry or return

e Useful for replacing print £ () and logging and DEBUG
e USDT vS. SDT

72

The Extension Process

Provider Add or extend?
Declare tracepoints in a header
Define tracepoints in compiled code
Translate the arguments and structures

73

Arguments and Types

Debugger Syntax
Translators

74

Translators

e Rationalize structures across platforms
e Give convenient names for complex data types

e Do not have a zero cost

75

Stability

e What makes a provider or probe stable or unstable?
TCP Stable
UDP Stable
IP Stable
mbuf Unstable

76

A Look Inside FreeBSD with DTrace
Kernel SDTs

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

77

Converting Logging Code

e Most code littered with print £
e Many different DEBUG options
e Most can be converted

78

TCPDEBUG Case Study

e TCBDEBUG added in the original BSD releases
o Rarely enabled kernel option that shows:

e direction

e state

e sequence space

e rcv_nxt, rcv_wnd, rcv_up

e snd_una, snd_nxt, snx_max

e snd_wll, snd_wl2, snd_wnd

79

TCPDEBUG Before

127 lines of code

14 calls to printf
Statically defined ring buffer of 100 entries

Static log format

80

TCPDEBUG After

e Four (4) new tracepoints
e debug-input
e debug-output
e debug-user
e debug-drop

e Access to TCP and socket structures
e Flexible log format

81

Convenient Macros

e SDT_PROVIDER_DECLARE Declare a provider in an
include file

e SDT_PROVIDER_DEFINE Instantiate a provider in C code
e SDT_PROBE_DECLARE Declare a probe in a n include file

e SDT_PROBE_DEFINEN Define a probe of X arguments
(0-6)

e SDT_PROBE_DEFINEN_XLATE Define a probe of N
arguments with translation

e Only available for kernel code

82

TCP Debug Desclarations

1
2
3
4

SDT_PROBE_DECLARE(tcp ,
SDT_PROBE_DECLARE(tcp ,
SDT_PROBE_DECLARE(tcp ,
SDT_PROBE_DECLARE(tcp ,

s

debug__input);
debug__output);
debug__user);
debug__drop);

83

TCP Debug Call Sites

#ifdef TCPDEBUG

if (tp == NULL || (tp—>t_inpcb—inp_socket—>so_options & SO DEBUG))
tcp_trace (TA_ DROP, ostate, tp, (void =)tcp_saveipgen,
&tcp_savetcp, 0);
#endif

TCP_PROBE3(debug__input, tp, th, mtod(m, const char x));

84

TCP Debug Translators

1 SDT_PROBE_DEFINE3 XLATE(tcp, , , debug__input,
2 "struct tcpcb ", "tcpsinfo_t *" |,

3 "struct tcphdr ", "tcpinfo_t =",

4 "uint8_t =", "ipinfo_t x");

5]

6 SDT_PROBE_DEFINE3 XLATE(tcp, , , debug__output,
7 "struct tcpcb x", "tcpsinfo_t *" |,

8 "struct tcphdr ", "tcpinfo_t =",

9 "uint8_t =", "ipinfo_t %");

10

11 SDT_PROBE_DEFINE2 XLATE(tcp, , , debug__user,
12 "struct tcpcb =", "tcpsinfo_t x" ,

13 "int", "int");

14

15 SDT_PROBE_DEFINE3 XLATE(tcp, , , debug_ drop,
16 "struct tcpcb ", "tcpsinfo_t *" |,

17 "struct tcphdr ", "tcpinfo_t =",

18 "uint8_t =", "ipinfo_t x");

85

TCP Debug Example Script

1
2
3
4
5)
6
7
8

-
N = o ©

tcp:kernel ::debug—input
/args[0]—>tcps_debug/

{

seq = args[1]—>tcp_seq;

ack = args[1]—>tcp_ack;

len = args[2]—>ip_plength — sizeof(struct tcphdr);
flags = args[1]—>tcp_flags;

printf ("%p %s: input [%Xxu..%xu]", arg0,
tcp_state_string[args[0]—>tcps_state], seq, seq + len);

printf ("@mx, urp=%x", ack, args[1]—>tcp_urgent);

86

TCP DEbug Example Script Part 2

0N OA WND =

printf ("%s", flags != 0 ? "<" : "");
printf("%s", flags & TH.SYN ? "SYN,"
printf ("%s", flags & TH_ACK ? "ACK,"
printf("%s", flags & TH_FIN ? "FIN,"
printf("%s", flags & TH_RST ? "RST,"
printf ("%s", flags & TH PUSH ? "PUSH,
printf("%s", flags & TH URG ? "URG,"
printf("%s", flags & TH_ECE ? "ECE,"
printf("%s", flags & THCWR ? "CWR"

printf("®ws", flags =0 ? ">" : "");

printf("\n");

printf ("\trcv_ (nxt,wnd,up) (%X,%Xx,%x) snd_(una,nxt,max) (%X,%X,%x)\n",

args[0]—>tcps_rnxt, args[0]—>tcps_rwnd, args[0]—>tcps_rup,

args[0]—>tcps_suna, args[0]—>tcps_snxt, args[0]—>tcps_smax);
printf ("\tsnd_(wl1,wl2 ,wnd) (%X,%X,%x)\n",

args[0]—>tcps_swl1, args[0]—>tcps_swl2, args[0]—>tcps_swnd);

87

How Much Work is That?

200 line code change

167 lines of example code
A few hours to code

A day or two to test

Now we have always on TCP debugging

88

Lab Exercise: Adding Kernel Tracepoints

89

Networking and FreeBSD

Everyone’s TCP/IP Stack
IPv4, IPv6, UDP, TCP, SCTP

Various drivers

Multiple firewalls

90

The User Program View

e User programs use sockets
e Network programs follow UNIX model
e Flexible interfaces for different protocols

91

e Main programmer interface to networking
e Generic API
e Attempts to support read/write semantics

92

Looking Directly at Sockets

Count sockets by family
Count sockets by type

Count sockets by protocol

93

Network Lab (Sockets Exercises)

Count socket calls by domain, type and protocol

Show programs accepting connections

Show programs initiating connections

Write a D script to trace a single socket with the test
program

94

95

Network Stack Overview

Sockets

TCP UDP

X

IPv4 IPv6e

Ethernet

if0 if1 if2 | lo0

96

Inbound Layer

socket layer soreceive()

sbappend.

transport layer TCP

link layer l Ethernet | IPv4 I TCP I Data l

)
————————————— “ers,__________,,,,,,
CPU dispatch [mveme [1pva [TP | Daia |

4
————————————— ne[lsr————————————————
network interface [thernet [1Pv4 [TCP | Dan |

layer
device
inler‘rupl

network
hardw:

97

Simplest transport protocol
No states to maintain

Data is sent immediately

Supports multicast

Only probes are send and receive

98

UDP Send and Receive

e udptrack

99

Transmission Control Protocol

Stream based
In order delivery

Maintains the illusion of a byte stream

100

TCP Connections

e tcpconn

101

TCP State Machine

e tcpstate

102

Tracking More of TCP

e tcptrack

103

Network Protocol Lab Exercises

e Add IP source and destination information to tcpstate
e Add support for send and receive calls to tcptrack

e Show the congestion window for a single connection over
time

104

Packet Forwarding

e System as a router, switch or firewall
e Network Layer Packets only

105

A Worked Example

Arista 7124
(gigax3)

| |
cxl0 cxI0

J |
Iyrx1 o 1 rabbit3 . Iynx3
(source) cx1 cxI0 (U cxil cxl (sink)

172.16.0.2 1?2.16.?.3 172.16.1.2 172.16.1.3

igb0 igh0 igh0

1 1 .

Control Network

106

Forward vs. Fast Forward

o What difference does this make?

e net.inet.ip.fastforward
e Where do we look?
e What can be known?

107

Normal vs. Fast

value ——————————-——— Distribution - ——————--———- cou
512 0
1024 |(@EEECEEQRQRQRQRQRRQRQRRQRRQAQREEEE@ 1414505

2048 |@ 3547
4096 | 481
8192 | 0
value ————————————- Distribution —-——————-————- co
512 0
1024 |@QEECEQREQRQRRQRRQRQRRAREAERERE@ 1721837

2048 |@ 4128
4096 | 490
8192 | 0

108

Network Lab (Protocols)

e Show inbound connections to sshd
e What routines are called when a ping packet arrives?
e What routines are called before tcp_output () ?

109

A Look Inside FreeBSD with DTrace

Network Memory (mbufs)

George V. Neville-Neil Robert N. M. Watson
June 8, 2016

110

What is an mbuf?

Memory for network data

Contains meta-data

Compact and flexible

Clusters vs. mbufs

111

112

mbuf lifecycle

Allocation

Adjustment

References

Recycling

113

m_init Initialize an mbuf

m_get Allocate an mbuf

m_gethdr Allocate a packet header mbuf
m_getcl Allocate an mbuf with a cluster

m_free Free a single mbuf

m_freem Free a chain of mbufs

114

mbuf tracepoints

e sdt:::m-init

e sdt:::m—gethdr
e sdt:::m—get

e sdt:::m-getcl
e sdt:::m-clget
e sdt:::m-cljget
e sdt:::m-cljset
e sdt:::m—free

e sdt:::m—-freem

115

mbuf translator

116

mbuf one liners

e Where are clusters allocated?

e sdt:::m-getcl { @Q@[stack ()] = count();}

e Where do we wait?

e m-getcl/arg0 == 2/{Q@[stack ()] = count();}

e Where do we not wait?

e m-getcl/arg0 == 1/{ Q[stack()] = count(); }

117

Network Lab (mbufs)

e Write an mbuf one liner to track mbuf frees.
e Write a short script that tracks m_get vs. m_free

118

File Systems Overview

naming Translating human names to usable objects
storage Store and retrieve blocks of data

119

e Translate a human name to something
e namei is the main interface

e All names reside in the name cache

120

Name Lookup

e What names are being looked up?

dtrace —n

CPU

NN

1D
27847
27847
27847
27847
27847

‘vfs :namei:lookup:entry { printf("%s", stringof(argl));}
FUNCTION :NAME

lookup:
lookup :
lookup :
lookup :
lookup :

entry
entry
entry
entry
entry

/bin/ls
/libexec/ld—elf.so.1
/etc
/etc/libmap.conf
/etc/libmap.conf

121

e Speeds up searching
e Maintains positive and negative results

e Invalidation on changes in directories

122

Who is missing the cache?

1 dtrace —n ’'vfs :namecache:lookup:miss { printf("%s", stringof(arg1));}’

123

Name Cache Module

enter Add a positive entry
enter_negative Add a negative entry
lookup:hit Name found in positive cache
lookup:hit-negative Name found in negative cache
lookup:miss Name not found in cache

purge Remove positive entry
purge_negative Remove negative entry

zap Remove positive entry with or without vnode

zap_negative Remove negative entry with or without vnode

124

Adding negative entries

1 dtrace —n ’'vfs:namecache:enter_negative: { printf("%s", stringof(argl)); }’

125

Name Caching Lab Exercises

e Create a one-liner to count zaps vs. purges
o Write a script to track all namecaching statistics

126

VNODE Operations

e After a path or name is looked up
e Do something with a vnode

® open, close, read, write

127

VFS Lab Exercises

e Compare VFS reads with the read system call
e Compare VFS writes with the write system call
e Track all VOP operations and count their frequency

128

